Generation and Fracturing of Thick Shells
نویسنده
چکیده
In this paper we present methods to generate and animate shells with a pre-defined thickness. Given a polygonal surface mesh, a thick shell is constructed by computing a second, extruded polygonal surface. We introduce methods to simulate deformation and fracture of thick shells in realtime. Mass-spring models are used in this context. A novel simulation framework to generate, animate and interact with shells in real-time has been created. The entire pipeline of shell animation may be handled, starting at the generation of shell, continuing on to deformation and fracture and ending with rigid body simulation of fractured shell fragments.
منابع مشابه
A review of functionally graded thick cylindrical and conical shells
Thick shells have attracted much attention in recent years as intelligent and functional graded materials because of their unique properties. In this review paper, some critical issues and problems in the development of thick shells made from Functionally graded piezoelectric material (FGPM) are discussed. This review has been conducted on various types of methods which are available for thick ...
متن کاملAn Investigation of Stress and Deformation States of Rotating Thick Truncated Conical Shells of Functionally Graded Material
The present study aims at investigating stress and deformation behavior of rotating thick truncated conical shells subjected to variable internal pressure. Material prpperties of the shells are graded along the axial direction by Mori-tanaka scheme, which is achieved by elemental gradation of the properties.Governing equations are derived using principle of stsionary total potential (PSTP) and ...
متن کاملThermoelastic Analysis of Rotating Thick Truncated Conical Shells Subjected to Non-Uniform Pressure
In the present work, a study of thermoelastic analysis of a rotating thick truncated conical shell subjected to the temperature gradient and non-uniform internal pressure is carried out. The formulation is based on first-order shear deformation theory (FSDT), which accounts for the transverse shear. The governing equations, derived using minimum total potential energy principle, are solved, usi...
متن کاملStress Analysis of Rotating Thick Truncated Conical Shells with Variable Thickness under Mechanical and Thermal Loads
In this paper, thermo-elastic analysis of a rotating thick truncated conical shell subjected to the temperature gradient, internal pressure and external pressure is presented. Given the existence of shear stress in the conical shell due to thickness change along the axial direction, the governing equations are obtained based on first-order shear deformation theory (FSDT). These equations are so...
متن کاملEffect of Exponentially-Varying Properties on Displacements and Stresses in Pressurized Functionally Graded Thick Spherical Shells with Using Iterative Technique
A semi-analytical iterative method as one of the newest analytical methods is used for the elastic analysis of thick-walled spherical pressure vessels made of functionally graded materials subjected to internal pressure. This method is accurate, fast and has a reasonable order of convergence. It is assumed that material properties except Poisson’s ratio are graded through the thickness directio...
متن کامل